Numerical Differentiation

Ching-Han Chen I-Shou University 2006-04-11

Divided Difference

The variable x and function y = f(x) in tabular form

_		
first di	f(x)	<i>x</i>
	$f(x_0)$	<i>x</i> ₀
$\int f(x_i, x)$	$f(x_1)$	<i>x</i> ₁
	$f(x_2)$	<i>x</i> ₂
second		
	$f(x_{n-1})$	x_{n-1}
$f(x_i, x_j,$	$f(x_n)$	x _n

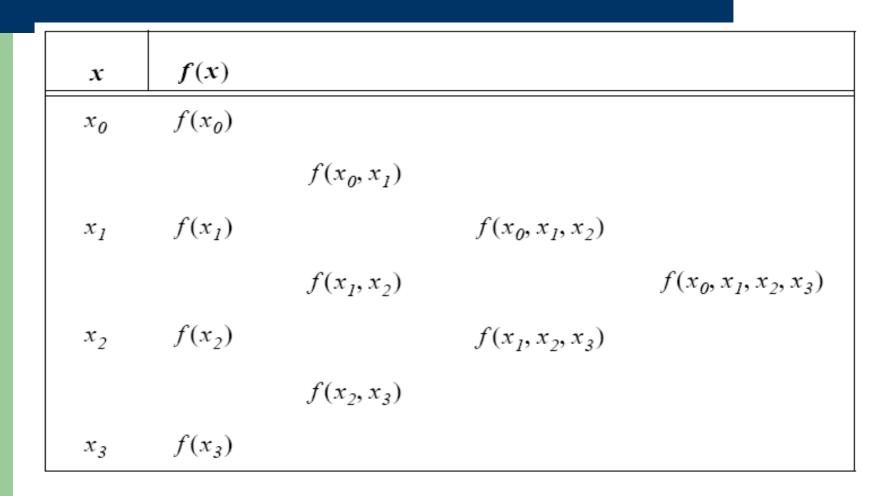
first divided difference

$$f(x_{i}, x_{j}) = \frac{f(x_{i}) - f(x_{j})}{x_{i} - x_{j}}$$

second divided difference

$$x_k) = \frac{f(x_i, x_j) - f(x_j, x_k)}{x_i - x_k}$$

Tabular Representation of divided difference



Form a difference table showing the values of given as 0, 1, 2, 3, 4, 7, and 9, with $y=f(x)=x^3$

Function		Divided Differences					
x	$f(x) = x^3$	First	Second	Third	Fourth		
0	0						
		1					
1	1		4				
		13		1			
3	27		8		0		
		37		1			
4	64		14		0		
		93		1			
7	343		20				
		193					
9	729						

double x[6]={0,1,3,4,7,9}; double f[6]; double first[5], second[4], third[3], fourth[2]; int i; for(i=0;i<6;i++)f[i]=pow(x[i],3); // function for(i=0;i<5;i++)first[i]=(f[i]-f[i+1])/(x[i]-x[i+1]); for(i=0;i<4;i++)second[i]=(first[i]-first[i+1])/(x[i]-x[i+2]); for(i=0;i<3;i++)third[i]=(second[i]-second[i+1])/(x[i]-x[i+3]); for(i=0;i<2;i++)fourth[i]=(third[i]-third[i+1])/(x[i]-x[i+4]);

Form a difference table showing the values of given as 0, 1, 2, 3, 4, 7, and 9, with $y=f(x)=x^3$

6:5	"C:\Documents	and Setting	s\Pierre CH	EN\My Docu	ments\Debu;	g\d_diff.exe"
0	1	27	64	343	729	
1	13	37	93	193		
4	8	14	20			
1	1	1				
0	0					
Pre	ss any key	to cont	inue			

Difference

If the values of x in a table are equally spaced (a constant h), then $x_k = x_0 + k.h$

the first differences:

$$\Delta f_k = f_{k+1} - f_k$$

second differences:
$$\Delta^2 f_k = \Delta(\Delta f_k) = \Delta f_{k+1} - \Delta f_k$$

nth differences:

$$\Delta^{n} f_{k} = \Delta(\Delta^{n-1} f_{k}) = \Delta^{n-1} f_{k+1} - \Delta^{n-1} f_{k}$$

Difference

	Functio	n			Differences		
k	x_k	f_k	Δf_k	$\Delta^2 f_k$	$\Delta^3 f_k$	$\Delta^4 f_k$	
1	1	1					
			7				
2	2	8		12			
			19		6		
3	3	27		18		0	
			37		6		
4	4	64		24		0	
			61		6		
5	5	125		30		0	
			91		6		
6	6	216		36		0	
			127		6		
7	7	343		42			
			169				
8	8	512					

Ex1.

For

 $f(x) = x^4 - 5x^3 + 3x + 4$

construct the difference table and x=0,1,2...,99

Draw the curve of each order of divided difference in Excel

Difference Using the binomial expansion

For
$$k=0, n=1,2,3$$
 and 4,
we have $\Delta f_0 = f_2 - f_1$

$$\Delta^{2} f_{0} = f_{2} - 2f_{1} + f_{0}$$

$$\Delta^{3} f_{0} = f_{3} - 3f_{2} + 3f_{1} - f_{0}$$

$$\Delta^{4} f_{0} = f_{4} - 4f_{3} + 6f_{2} - 4f_{1} + f_{0}$$

Or, more generally :

$$\Delta^{n} f_{k} = f_{k+n} - nf_{k+n-1} + \frac{n(n-1)}{2!} f_{k+n-2} + \dots + (-1)^{n-1} nf_{k+1} + (-1)^{n} f_{k}$$

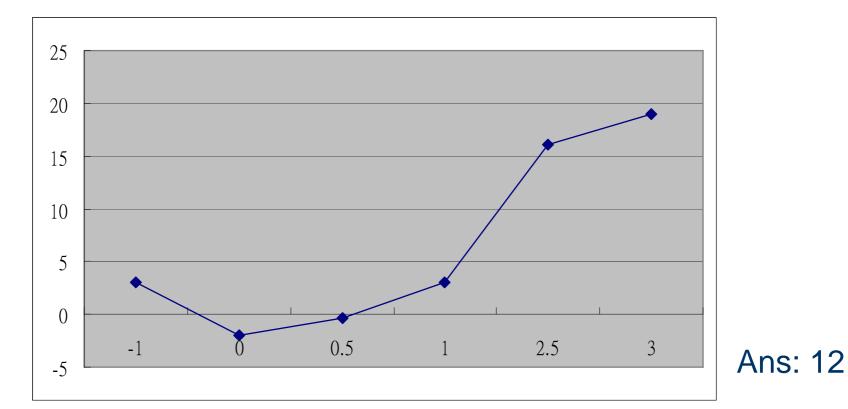
Newton's Divided Difference

While $x_0 x_1 x_2$, , , ..., x_n are not equally spaced, we can use

$$\begin{split} f(x) &= f(x_0) + (x - x_0) f(x_0, x_1) + (x - x_0) (x - x_1) f(x_0, x_1, x_2) \\ &+ (x - x_0) (x - x_1) (x - x_2) f(x_0, x_1, x_2, x_3) \end{split}$$

Ex.2 Use Newton's divided-difference method to compute f(2) from

x	-1.0	0.0	0.5	1.0	2.5	3.0
y = f(x)	3.0	-2.0	-0.375	3.0	16.125	19.0



Newton's Divided Difference Interpolation Method

$$p(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_0) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2) = 1 + 2(x - 3) - \frac{3}{8}(x - 3)(x - 1) + \frac{7}{40}(x - 3)(x - 1)(x - 5).$$